
Installation of AlphaFold 2 and

AlphaFold-Multimer

to faciliate studies of protein
Final report submitted in partial fulfilment

of the requirements of course BIO301

Cyrus Pellet, Nguyen Doan Dai

January 3, 2022

1. Introduction

Originally a task given to us in the course BIO301, we were asked to install
AlphaFold 2 and AlphaFold-Multimer (hereinafter together referred to as Al-
phaFold), and all the necessary additional tools to study the proteins related to
mutations in DNA of archaea. Unfortunately, during the course of the project,
there have been many complications due to various causes, which would be the
subject of discussion further below.

In short, imperfect conditions have raised the technical complexity and
forced us to come up with some ad-hoc engineering solutions, but also forbid-
den us from using the tools installed to initiate any meaningful scientific studies.
Nevertheless, for this exact reason, we also feel the need to write this technical
report, serving both as a documentation of the project and an user’s/developer’s
guide, with our hope that it shall help future maintenance.

2. Preliminary

First, we shall give some background, which will then explain our choice of
tools.

2.1. Protein structure prediction. Whilst it is true that our task was to
specifically install AlphaFold, all such decisions must be justified, and for this,
we were asking if AlphaFold would be the most appropriate choice, for ap-
parently, it is not the only Machine Learning model addressing the problem
of protein folding. The question we wished to answer before the start of the
project was two-fold:

1. AlphaFold-Multimer has the advantage that it also predicts structures of
multimeric protein complexes, and furthermore, at the moment of writing,

1

it is the only deep learning method designed for the task [1]. But is it
necessary for our task?

2. For the problem of monomer protein folding, is AlphaFold 2 the most
suitable solution?

For the first question, although we must admit that we have only little
knowledge of the proteins which shall be studied after, it has come to us that the
installation and/or creation of these tools shall take into consideration future
studies on different subjects, far beyond the scope of archaea. And in this
sense, undeniable is the existence and the importance of dimer and multimer
proteins in DNA and RNA handling [2], selection [3], regulation [4]. With
recent developments in epigenetics and studies of histone, one may expect more
applications in the future, and thus the need to study multimeric protein-DNA
complexes. Thus, we deem that the solving of multimeric protein complexes be
of indisputable necessity.

For the second question, since DeepMind’s breakthrough of AlphaFold and
publication of AlphaFold 2 [5], there have been many deep learning methods
to the problem of monomeric protein structure prediction which may or may
not based on AlphaFold itself, e.g. D-I-TASSER [6], RaptorX [7], ColabFold
[8], RoseTTAFold [9], trRosetta [10], DMPfold [11], EVfold [12], SAINT2 [13],
and most recently, EMSFold [14] and OmegaFold [15] (an incomplete review is
given at [16]). In short, given the wide scope, large depth, and complexity of
the protein folding problem, it is unfathomable to have a perfect, one-size-fit-all
solution, and the choice of the model depends on the set of proteins of interest
and the available resources, for there is a trade-off between accuracy and speed.
But, given that in this project, speed is of little concern and accuracy is given
much emphasis, as well as our wish to facilitate future studies to the best of our
capability, the choice of AlphaFold is thus natural, as the most general, accu-
rate, and well-documented method. The necessity of solving multimeric protein
folding problem as explained above, and available methods for the protein-DNA
binding site prediction problem, which shall be discussed below, also motivate
this decision.

2.2. Protein-DNA binding site prediction. Another goal of the project is
to study protein-DNA complexes, and in particular the possible binding sites of
proteins on DNA. One may argue that as the geometry of the protein will play a
role in how it will interact with DNA, it is essential to incorporate the structure
of the protein into the prediction, and indeed, the breakthrough of AlphaFold
in predicting structures of proteins has allowed similar progresses in protein-
DNA binding site problem. Given that we install AlphaFold, we look for a way
to incorporate that into the solving of protein-DNA binding site, and recently
reported is such a method, called GraphSite [17] (a short literature review and
comparisons with other state-of-the-art methods are also available in [17]). Of
course, there are other methods which do not depend upon AlphaFold or any
other methods for the problem of protein structure prediction (for a review, see

2

[18, 19]), but whilst there exist no standard datasets to serve as a benchmark,
comparisons with other methods suggest that GraphSite is amongst the most
accurate solution at the moment of writing. Thus, we decide to install GraphSite
after AlphaFold.

3. Installation of AlphaFold

3.1. Notes on installation. In general, we follow the guide published at
https://github.com/deepmind/alphafold/, but during the installation, there
were complications that forced us to devise ad-hoc methods to overcome, either
known existing issues with AlphaFold and/or its database, or limitation of the
server on which we installed AlphaFold, that we believe it will be beneficial to
document as it will help future maintenance.

3.1.1. Issue with /pdb seqres/pdb seqres.txt. During our first run of Al-
phaFold, we encountered the following error

I1026 15:27:03.974704 140459173607232 run_docker.py:255]

Parse failed (sequence file

/mnt/pdb_seqres_database_path/pdb_seqres.txt):

I1026 15:27:03.974859 140459173607232 run_docker.py:255]

Line 1364612: illegal character 0

Further reading shows that this is a known problem (https://github.com/
deepmind/alphafold/issues/569), and it is intrinsic of the file pdb_seqres.

txt, thus it will occur every time one updates the database, which includes
running the script scripts/download_pdb_seqres.sh. As of the moment of
writing, the issue has been addressed in the release of version 2.3.0 of AlphaFold.
Nonetheless, it was not the case at the start of the project, and we decide that
it is necessary that we mention this issue in this report, in case it occurs again
in the future.

3.1.2. Issue with insufficient storage. The database of AlphaFold calls for a
continuous storage space of approximately 2.62 GB. At the time of writing, we
were allocated two storage directories, at /home/alphafold and at /media/

disk1/alphafold, respectively. Given the large storage space available at
/media/disk1/alpafold, it was decided that this would be where the database
would be stored, but over the course of project, it occurred to us that there was
not sufficient space: although we used 98% of the storage, meaning there were
only 78 GB available, we would still need to store the uniref30 dataset of size
206 GB. And, it is not possible to run AlphaFold without this dataset, as both
attempts to do so with monomeric and multimeric version were unsuccessful.

One possible solution is to set up a virtual file system and combine mul-
tiple physical storage spaces as a single virtual one, which proved to be too
complicated for a problem that can be resolved in the future just by adding
a new hard disk. Nevertheless, for the time being, we still need a way to

3

https://github.com/deepmind/alphafold/
https://github.com/deepmind/alphafold/issues/569
https://github.com/deepmind/alphafold/issues/569

load uniref30 dataset. Thus, we opted for an ad-hoc solution, which goes
against principles in software development and will fail if one decides to up-
date the code base of AlphaFold. Closer inspection of the code base of Al-
phaFold shows that the database is loaded during the execution of the script
docker/run_docker.py, and specifically, the links to the file in the database are
described from line 126 to line 162 (cf. the file docker/run_docker.py up to
the commit with hash 54f127a51778ba12407d96d7d23cc66d24e2cf58). Thus,
by modifying these lines, one can point to any directories, and there will be no
need for a single continuous storage space for the database. In particular, we
modified the line 148-149, from

uniref30_database_path = os.path.join(

FLAGS.data_dir, ’uniref30’, ’UniRef30_2021_03’)

to

uniref30_database_path = os.path.join(

’/home/alphafold/dbs_extended, ’uniref30’, ’UniRef30_2021_03’)

Finally, the final directory structure is given below.
home/alphafold

dbs extended

uniref39

7 files

media/disk1/alphafold/dbs

bfd

6 files

mgnify

mgy clusters 2022 05.fa

params

16 files

pdb70

9 files

pdb mmcif

mmcif files

About 199,000 .cif files

obsolete.dat

pdb seqres

pdb seqres.txt

small bfd

bfd-first non consensus sequences.fasta

uniref90

uniref90.fasta

uniprot

uniprot.fasta

Future maintainers of the installed AlphaFold are thus advised to take this

4

change into consideration.

3.1.3. Issue with installation of docker. After an incident occurred in which
the NVIDIA driver on iss machine stopped working, it has appeared to us that
docker was reinstalled with snap instead of apt. Whilst there seemed to be no
differences between the two version, it is generally considered that it is better
to install a program on Linux with apt than with snap. And in this case, it
made a difference, as we encountered the following error

Traceback (most recent call last):

File "docker/run_docker.py", line 264, in

app.run(main)

File "/usr/local/lib/python3.8/dist-packages/absl/app.py", line 312, in

run

_run_main(main, args)

File "/usr/local/lib/python3.8/dist-packages/absl/app.py", line 258, in

_run_main

sys.exit(main(argv))

File "docker/run_docker.py", line 234, in main

container = client.containers.run(

File

"/usr/local/lib/python3.8/dist-packages/docker/models/containers.py",

line 818, in run

container.start()

File

"/usr/local/lib/python3.8/dist-packages/docker/models/containers.py",

line 404, in start

return self.client.api.start(self.id, **kwargs)

File

"/usr/local/lib/python3.8/dist-packages/docker/utils/decorators.py",

line 19, in wrapped

return f(self, resource_id, *args, **kwargs)

File "/usr/local/lib/python3.8/dist-packages/docker/api/container.py",

line 1111, in start

self._raise_for_status(res)

File "/usr/local/lib/python3.8/dist-packages/docker/api/client.py", line

270, in _raise_for_status

raise create_api_error_from_http_exception(e)

File "/usr/local/lib/python3.8/dist-packages/docker/errors.py", line 31,

in create_api_error_from_http_exception

raise cls(e, response=response, explanation=explanation)

docker.errors.APIError: 500 Server Error for

http+docker://localhost/v1.41/containers/879bc867a01bf2f011e997b81

2e650fd8c893d1dc493bf69a544e9c38066734f/start: Internal Server Error

("could not select device driver "nvidia" with capabilities:

[[gpu]]")‘

This is a known issue (https://github.com/deepmind/alphafold/issues/
479) but without any known methods to resolve, and the error message only

5

https://github.com/deepmind/alphafold/issues/479
https://github.com/deepmind/alphafold/issues/479

suggests that there were some issues with NVIDIA docker installation. After
some search, we uninstall docker with snap, and then reinstalled with apt,
which resolved the issue.

3.2. Results. The steps to run AlphaFold from command line are relatively
simple: supposed we are at /home/alphafold.

1. Save the .fasta file containing the sequence(s) at /home/alphafold/

alphafold/data.

2. In command line,

alphafold@iss:~$ source alphafold/bin/activate

3. Run

(alphafold) alphafold@iss:~$ python3

alphafold/docker/run_docker.py

--fasta_paths=alphafold/data/xxx.fasta

--model_preset=monomer

--data_dir=/media/disk1/alphafold/dbs/

where xxx is the ID of protein. Or, if one wishes to let AlphaFold run in
the background, run instead

(alphafold) alphafold@iss:~$ nohup python3

alphafold/docker/run_docker.py

--fasta_paths=alphafold/data/xxx.fasta

--model_preset=monomer

--data_dir=/media/disk1/alphafold/dbs/ &

and the output will be saved in file /home/alphafold/nohup.out, which
can be inspected with

alphafold@iss:~$ cat nohup.out

To run AlphaFold-Multimer, one can change --model preset=monomer to
--model preset=multimer. Further information can be found at https:
//github.com/deepmind/alphafold.

4. After the program finishes, the result can be found at /tmp/alphafold/
xxx.

After the installation, we have tested with various protein and protein com-
plexes, amongst which are ones with RCSB Protein Data Bank ID given by
5ZNG, 6A6I, 6GS2, 6H4B, 6IF2, as well as protein T0543 from CASP9, T0146s1
(sub-unit 1 of protein 6PX4 in RCSB database) and T1050 from CASP14. Fig-
ures of comparisons are given in Appendix.

6

https://github.com/deepmind/alphafold
https://github.com/deepmind/alphafold

4. Creation of a user interface

Due to the inherently convoluted nature of the whole process, we additionally
set out to create an interface to interact with AlphaFold. This is the first project
of this nature to ever be conceived, since until very recently, recent modifications
of the program did not make it suitable for production usage by non-computer
scientists. Apart from providing a convenient way to submit FASTA files for
folding, we set out to include the following improvements over the raw AlphaFold
pipeline:

1. A queuing system to submit jobs in advance to be sequentially processed
one after the other.

2. An embedded protein structure visualiser to quickly analyse the fold-
ing results without specialised software.

3. Tools to visualise task folding progress in real time while the program
is running.

4. A persistent backlog of completed tasks with their running time, sequence
data and results.

5. Robust result export features to easily retrieve all PDB files from any
task.

With these goals in mind, a first step to such an endeavour was to gain a
deeper understanding of AlphaFold’s inner workings. This would allow us to
understand the cryptic output of the program, and it is only thanks to this
understanding of the steps involved in the folding process that accurate feedback
can be provided to the user in real time.

4.1. The folding process. A frequent criticism of deep learning models such
as AlphaFold is that they essentially constitute a black box approach. Indeed,
one inputs a protein sequence and, some time later, the three-dimensional pro-
tein structure is ”magically” produced. Here for the sake of our understanding
of the process, we aim to shed some light regarding what goes behind the scenes
after a folding task is submitted. We will not aim for exhaustiveness or techni-
calities, as for those one can delve into the following document by DeepMind.

Broadly explained, AlphaFold figures out the complex interrelationships of the
protein’s residues that dictate what structure that protein sequence adopts.
Then, it iterates to improve the local structural details until a sufficient cer-
tainty is achieved. To achieve this, the following steps are performed:

1. MSA: Several databases of known proteins (uniprot, uniref, etc...) are
queried with the aim of identifying sequences that are similar, but not
identical to the input sequence. This process, referred to as JackHMMER,
determines the parts of the sequence that have the strongest correlation

7

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03819-2/MediaObjects/41586_2021_3819_MOESM1_ESM.pdf

with existing sequences (Multiple Sequence Alignment). Next, AlphaFold
also tries to identify proteins that may have a similar structure to the
input - so called “templates” -, and constructs an initial representation of
the structure, which it calls the “pair representation” (HHSearch). This
is, in essence, a model of which amino acids are likely to be in contact
with each other.

2. Transformation: In this second part, multiple sequence alignments and
templates are fed through a so-called ”transformer” - a kind of oracle
that quickly identifies which pieces of information are more telling and
hence should be given more weight. This refinement process takes place
iteratively, around 48 times in total.

3. Structure model: this sophisticated piece of the pipeline takes the refined
”msa” and “pair representation”, leveraging them to construct a three-
dimensional model of the protein structure. Unlike the previous state-of-
the-art models, this network does not use any optimisation algorithm: it
generates a static, final structure, all in a single step. The end result is a
long list of Cartesian coordinates representing the position of each atom
of the protein, including side chains.

Following the completion of those steps, the output of the pipeline is fed back
into the second stage to refine results further.

This allowed us to understand a range of outputs from AlphaFold, from the
timings.json file that summarises the time taken for each pipeline step, to
the different ranked_n.pdb files that produce the progressively more refined
structure predictions. Here is the typical collection of outputted files for a given
folding task:

features.pkl relax_metrics.json

msas result_model_1_pred_0.pkl

ranked_0.pdb result_model_2_pred_0.pkl

ranked_1.pdb result_model_3_pred_0.pkl

ranked_2.pdb result_model_4_pred_0.pkl

ranked_3.pdb result_model_5_pred_0.pkl

ranked_4.pdb timings.json

ranking_debug.json unrelaxed_model_1_pred_0.pdb

relaxed_model_1_pred_0.pdb unrelaxed_model_2_pred_0.pdb

relaxed_model_2_pred_0.pdb unrelaxed_model_3_pred_0.pdb

relaxed_model_3_pred_0.pdb unrelaxed_model_4_pred_0.pdb

relaxed_model_4_pred_0.pdb unrelaxed_model_5_pred_0.pdb

relaxed_model_5_pred_0.pdb

4.2. Origami - User Interface. We hypothesise that the current lack of con-
venient interfaces to interact with AlphaFold can be attributed to its very recent
and rapid development. Nonetheless, we set out to facilitate the points listed

8

above with our fresh understanding of the pipeline. The result can be seen
below: a modern web application that interacts with our own Application Pro-
gramming Interface (API) to display relevant information to the user and accept
their input.

Figure 1: Folding tasks summary page in Origami.

Figure 2: Task creation workflow in Origami.

9

5. Installation of GraphSite

5.1. Notes on installation. Same as AlphaFold, the guide to be followed
is mostly straightforward and available at https://github.com/biomed-AI/

GraphSite. We installed C++ library libcif++ which is required for HH-
Suite and DSSP - the built files of which are contained in /home/alphafold/

hh-suite/build and /home/alphafold/dssp/build/.
To run GraphSite, it is also preferable to provide ”single representation” of

the protein, i.e. the first row of the MSA representation. Although GraphSite
can run without single representation via mode evo, the authors also warned
that ”Set --msa evo to use only evolutionary features (PSSM + HMM) as
MSA information (might causes large performance drop)”, and we wish to
install the most accurate version of GraphSite. Unfortunately, neither Al-
phaFold 2 nor AlphaFold-Multimer returns single representation (or any rep-
resentations derived from MSA, for that matter), and there is no conceiv-
able way to construct it from the output. This is a known issue (https:
//github.com/deepmind/alphafold/issues/471) which has no solution at
the moment of writing, but to rerun the whole prediction based on ColabFold
(https://github.com/yuxin212/intfold), which introduces new issues, such
as

• redundancy in computational work,

• poor maintainability, as upgrading to new models would require updating
two separated programs,

• unnecessary complexity.

AlphaFold must use such representation in its pipeline, for there exist mentions
of such a representation in the original paper [5]. And indeed, further inspection
into the code base shows that there is the option to return such representation
(/alphafold/model/modules.py at line 145 for AlphaFold 2 and /alphafold/

model/modules_multimer.py at line 424), which are by default turned off to
save memory. Thus, we edited the code base and turned such feature on. Future
maintainers of the code base are thus asked to take this into consideration.

5.2. Result. With the modifications to the code base made, the single repre-
sentation is now given in Pickle files, and we tested with some proteins, as well
as the test protein given by authors of [17]. The limited length of the report does
not allow a more detailed description, thus here we give the result for protein
with RSCB Protein Data Bank ID 2L09, of 62 nucleotides (which was chosen
for its small size).

Nevertheless, it appears that running GraphSite in its full mode takes

• considerably more time due to the querying of UniRef90 BLAST+ database
and making of .pssm file, and

• considerably more RAM due to calling of HHblits, which is a known issue,

10

https://github.com/biomed-AI/GraphSite
https://github.com/biomed-AI/GraphSite
https://github.com/deepmind/alphafold/issues/471
https://github.com/deepmind/alphafold/issues/471
https://github.com/yuxin212/intfold

with only marginal benefit as described in Table 2 of [17]. Users are thus advised
to take into consideration trade-off between resource and accuracy. Alternatives
to HHblits exist, but without any comparisons to the published methods, we
cannot provide any guarantee about accuracy. It is certainly resolvable by
providing more RAM, but the limited conditions did not allow such a solution.

References

[1] A. Fossati, C. Li, F. Uliana, F. Wendt, F. Frommelt, P. Sykacek, M. Heusel,
M. Hallal, I. Bludau, T. Capraz, P. Xue, J. Song, B. Wollscheid, A. W.
Purcell, M. Gstaiger, and R. Aebersold, “PCprophet: a framework for
protein complex prediction and differential analysis using proteomic data,”
Nature Methods, vol. 18, pp. 520–527, may 2021.

[2] J. Wilce, J. Vivian, and M. Wilce, “Oligonucleotide Binding Proteins,”
in Protein Dimerization and Oligomerization in Biology (J. M. Matthews,
ed.), ch. 6, pp. 91–104, Springer International Publishing, 2012 ed., 2012.

[3] D. A. Kretov, P. A. Curmi, L. Hamon, S. Abrakhi, B. Desforges, L. P.
Ovchinnikov, and D. Pastré, “mRNA and DNA selection via protein mul-
timerization: YB-1 as a case study,” Nucleic Acids Research, vol. 43,
pp. 9457–9473, oct 2015.

[4] J.-C. Bourdon, S. Surget, and M. P. Khoury, “Uncovering the role of p53
splice variants in human malignancy: a clinical perspective,” OncoTargets
and Therapy, p. 57, dec 2013.

[5] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland,
C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein,
D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Has-
sabis, “Highly accurate protein structure prediction with AlphaFold,” Na-
ture, vol. 596, pp. 583–589, aug 2021.

[6] W. Zheng, Y. Li, C. Zhang, X. Zhou, R. Pearce, E. W. Bell, X. Huang, and
Y. Zhang, “Protein structure prediction using deep learning distance and
hydrogen-bonding restraints in ¡scp¿CASP14¡/scp¿,” Proteins: Structure,
Function, and Bioinformatics, vol. 89, pp. 1734–1751, dec 2021.

[7] J. Xu, “Distance-based protein folding powered by deep learning,” Proceed-
ings of the National Academy of Sciences, vol. 116, pp. 16856–16865, aug
2019.

[8] M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, and
M. Steinegger, “ColabFold: making protein folding accessible to all,” Na-
ture Methods, vol. 19, pp. 679–682, jun 2022.

11

[9] M. Baek, F. DiMaio, I. Anishchenko, J. Dauparas, S. Ovchinnikov, G. R.
Lee, J. Wang, Q. Cong, L. N. Kinch, R. D. Schaeffer, C. Millán, H. Park,
C. Adams, C. R. Glassman, A. DeGiovanni, J. H. Pereira, A. V. Ro-
drigues, A. A. van Dijk, A. C. Ebrecht, D. J. Opperman, T. Sagmeister,
C. Buhlheller, T. Pavkov-Keller, M. K. Rathinaswamy, U. Dalwadi, C. K.
Yip, J. E. Burke, K. C. Garcia, N. V. Grishin, P. D. Adams, R. J. Read,
and D. Baker, “Accurate prediction of protein structures and interactions
using a three-track neural network,” Science, vol. 373, pp. 871–876, aug
2021.

[10] Z. Du, H. Su, W. Wang, L. Ye, H. Wei, Z. Peng, I. Anishchenko, D. Baker,
and J. Yang, “The trRosetta server for fast and accurate protein structure
prediction,” Nature Protocols, vol. 16, pp. 5634–5651, dec 2021.

[11] J. G. Greener, S. M. Kandathil, and D. T. Jones, “Deep learning extends
de novo protein modelling coverage of genomes using iteratively predicted
structural constraints,” Nature Communications, vol. 10, p. 3977, sep 2019.

[12] R. Sheridan, R. J. Fieldhouse, S. Hayat, Y. Sun, Y. Antipin, L. Yang,
T. Hopf, D. S. Marks, and C. Sander, “EVfold.org: Evolutionary Couplings
and Protein 3D Structure Prediction,” biorxiv2, 2015.

[13] S. H. P. de Oliveira, E. C. Law, J. Shi, and C. M. Deane, “Sequential search
leads to faster, more efficient fragment-based de novo protein structure
prediction,” Bioinformatics, vol. 34, pp. 1132–1140, apr 2018.

[14] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, A. dos
Santos Costa, M. Fazel-Zarandi, T. Sercu, S. Candido, and A. Rives, “Lan-
guage models of protein sequences at the scale of evolution enable accurate
structure prediction,” biorxiv, 2022.

[15] R. Wu, F. Ding, R. Wang, R. Shen, X. Zhang, S. Luo, C. Su, Z. Wu,
Q. Xie, B. Berger, J. Ma, and J. Peng, “High-resolution de novo structure
prediction from primary sequence,” biorxiv, 2022.

[16] C. Outeiral, D. A. Nissley, and C. M. Deane, “Current structure predictors
are not learning the physics of protein folding,” Bioinformatics, vol. 38,
pp. 1881–1887, mar 2022.

[17] Q. Yuan, S. Chen, J. Rao, S. Zheng, H. Zhao, and Y. Yang, “AlphaFold2-
aware protein–DNA binding site prediction using graph transformer,”
Briefings in Bioinformatics, vol. 23, mar 2022.

[18] J. Si, R. Zhao, and R. Wu, “An Overview of the Prediction of Protein
DNA-Binding Sites,” International Journal of Molecular Sciences, vol. 16,
pp. 5194–5215, mar 2015.

[19] Y. Zhang, W. Bao, Y. Cao, H. Cong, B. Chen, and Y. Chen, “A sur-
vey on protein–DNA-binding sites in computational biology,” Briefings in
Functional Genomics, vol. 21, pp. 357–375, sep 2022.

12

Figure 3: Comparison of structure of protein T0543 as experimentally deter-
mined (green) versus prediction made by AlphaFold 2 (pink).

13

Figure 4: Comparison of structure of protein 5ZNG as experimentally deter-
mined (blue) versus prediction made by AlphaFold 2 (gold).

Figure 5: Comparison of structure of protein 6A6I as experimentally determined
(cyan) versus prediction made by AlphaFold 2 (gold).

14

No. Amino Acid Probability No. Amino Acid Probability
1 M 0.0843 32 A 0.0080
2 N 0.0657 33 R 0.0150
3 L 0.0514 34 Q 0.0252
4 R 0.0791 35 A 0.0165
5 W 0.0794 36 E 0.0126
6 T 0.0557 37 Q 0.0278
7 S 0.0645 38 D 0.0420
8 E 0.0392 39 I 0.0547
9 A 0.0094 40 V 0.0247
10 K 0.1917 41 T 0.0497
11 T 0.0176 42 P 0.0369
12 K 0.2078 43 E 0.0178
13 L 0.0603 44 L 0.0130
14 K 0.3017 45 V 0.0105
15 N 0.0870 46 E 0.0312
16 I 0.1144 47 Q 0.0419
17 P 0.4437 48 A 0.0117
18 F 0.5047 49 R 0.1777
19 F 0.5637 50 L 0.0108
20 A 0.0562 51 E 0.0153
21 R 0.7695 52 F 0.1376
22 S 0.2242 53 G 0.0219
23 Q 0.3386 54 Q 0.0759
24 A 0.0136 55 L 0.0350
25 K 0.3839 56 E 0.0360
26 A 0.2716 57 H 0.0350
27 R 0.2031 58 H 0.0091
28 I 0.0146 59 H 0.0263
29 E 0.0304 60 H 0.0226
30 Q 0.1644 61 H 0.0146
31 L 0.0117 62 H 0.0196

Table 1: Prediction of protein-DNA binding site for protein with ID 2L09. The
threshold of the predictive score to determine is set to be 0.27. Amino acids
with scores above the threshold are highlighted in green. Result is obtained
with mode --msa single.

15

	Introduction
	Preliminary
	Protein structure prediction
	Protein-DNA binding site prediction

	Installation of AlphaFold
	Notes on installation
	Issue with /pdb_seqres/pdb_seqres.txt
	Issue with insufficient storage
	Issue with installation of docker

	Results

	Creation of a user interface
	The folding process
	Origami - User Interface

	Installation of GraphSite
	Notes on installation
	Result

